Design of a Multi-Pass Extraction Architecture for the DiPOLE Prototype Amplifier

<u>Paul Mason</u>, Andrew Lintern, Stephanie Tomlinson, Klaus Ertel, Saumyabrata Banerjee, Jonathan Phillips, Justin Greenhalgh, John Collier

7th HEC-DPSSL Workshop, Lake Tahoe, California 12-14th September 2012

paul.mason@stfc.ac.uk

STFC Rutherford Appleton Laboratory, R1 2.62 Central Laser Facility, OX11 0QX, UK +44 (0)1235 778301

Requirements

- Spatial
 - Maintain good beam quality
 - Minimise risk of hotspots & optical damage

Constraints

- Limited space available on optical table(s)
- Dichroic polarising beamsplitters for pump coupling
 - HR at 940nm (s-pol)
 - HT at 1030nm (p-pol)
 - Limited angular acceptance ± 3° for 1030 nm (p-pol)
- Beam size within amplifier
 2 cm x 2 cm square
- Angular multiplexing most appropriate solution

Relay Imaging System

Did O e fetigation fabylet enyretem

- Replace large lenses with lens and steering mirror arrays
 - Ensures beams propagate on-axis to minimise aberrations
- Two independent relay imaging telescopes for each pass
 - Independent alignment & flexibility in beam propagation direction
 - Predictable pinhole position
- Turning mirrors lead to folded geometry
 - Helps fit DiPOLE space constraints

Geometrical Considerations

- Minimise rotation
- Reflection gut of the steer gireg smirred (< 5 deg)
 - Bean autintensia young was a stated lasup pasital gation axis
 - Signlifeenderso union parmy aiteles (see any em.) বি প্রকার কর্মান et le ses / rectangular mirrors for closer packing

Telescope Design

DiPOLE Multi-Pass Design

- Asymmetric design chosen because of space constraints
 - Z-folded geometry ensures path lengths are similar for all passes

Primary Ghost Foci Positions

Science & Technology Facilities Council

Central Laser Facility

Build & Testing

- Manufacture of system components commenced June 2011
 - All optics supplied by CVi IoM
 - Custom mirror array mounts from Radiant Dyes Laser, Germany
- Installation completed June 2012
- Upgraded ZEMAX non-sequential model
 - Full stray light analysis with all system components, VSFs etc.
 - Gain in amplifier, ensure rays are maintained
 & provide estimate of fluence levels

Modelling GAIN in ZEMAX

- Target gain per pass (G_o)
 - $-G_o = (E_{out}/E_{in})^{1/passes}$, passes=4
 - $E_{in} = 0.1 J, E_{out} = 10 J, G_o = 3.16$
- Target gain per disk (G_d)
 - $-G_d = G_o^{1/disks} = 1.33$
- Add disk coating with (+)ve extinction coefficient (k)
- Coating design
 - Index 1.39 ~ $\sqrt{n_{YAG}}$ (1.81)
 - Optical thickness 0.22 μmquarter wave
 - Reasonable AR coating ~0.5% R
- ZEMAX model
 - $E_{out} = 4.5 J$

Ghost Predictions

Primary ghost foci F/2 from plane face of lens F

Observation (unpumped) behind turning mirror D

ZEMAX prediction with Gain

Prevention of ~1.5 m Ghost Focus in AMP

- Correct choice of pinhole size
- Baffling inside VSF to prevent cross talk between telescopes
- Telescope lens tilted to prevent pencil beams

Effect of Lens Tilt on Image Quality

Tilt angle required 0.7 deg

 Lens tilt minimal impact on image quality

Conclusions

- A novel multi-pass extraction architecture has been devised for DiPOLE prototype amplifier
 - System constraints (space, spatial & polarisation)
 - Angular multiplexing geometry allows up to 8 passes
- ZEMAX models have been used to design system
 - Optimum optical setup (geometry, pinhole sizes etc.)
 - Ghost & stray light analysis
- Multi-pass system built, installed & aligned for up to 8-passes
- Testing successfully demonstrated 10 J from 6-passes at 150 K
 - Optical-to-optical efficiency of ~25%

